个人简介

 陈锡康,男,‎1936‎年‎1‎月‎16‎日出生,正高级,首届中国科学院杰出科技成就奖获得者,首届复旦管理学杰出贡献奖获得者,国际投入产出学会会士IIOA Fellow,中国投入产出学会名誉理事长,中国投入产出技术早期开拓者之一,完成著作25部,国内外发表论文230篇。

 陈锡康研究员1936116日生于浙江镇海,中国共产党员。自幼成绩优异,致力于科学报国。

 1957年毕业于中国人民大学统计系工业统计专业,在钱学森先生的建议下,陈锡康等被吸收到力学所运筹学研究室(以后并到数学研究所),从事运筹学的研究工作。

 1965年根据中苏科学技术合作协定,他被派往原苏联列宁格勒大学经济系,成为经济数学方法专业的研究生。在学习期间,他就深感要根据中国国情研究新的系统科学和经济管理方法的重要性,从此醉心于此领域研究的50余年。

 陈锡康研究员既在系统科学与管理科学理论方法上实现了重大突破创新,又面向国家重大战略需求,为我国的社会经济发展不断建言献策。他所提出的科学建议受到国家多位中央领导人的批示和好评近百次。年逾80高龄的他,依然辛勤工作在科研第一线。

 在育人方面,陈锡康研究员悉心培养研究生,积极提携青年科研人员。他有宽广的国际视野,推动团队和在学生培养方面进行国际合作。作为会议的倡导者和组织者,推动召开系列中荷、中美国际投入产出研讨会,产生了广泛的国际影响,对推进中国投入产出学会的国际化,帮助学生和青年学者建立国际合作网络等做出了重要贡献。他已培养硕士/博士研究生40余人,他指导的很多学生已经成为各单位的骨干,有的已成长为研究院或学院的院长、院长助理,有的学生获得“中国青年科技奖”、“国家杰出青年科学基金”,多人被评为教授、博士生导师,成为有关领域学术带头人。


主要教育背景

1953.91957.8      中国人民大学                                    工业统计(学士)

1965.41967.1      前苏联列宁格勒大学                          经济数学方法(研究生)

 

主要工作经历

1957.81998.12     中国科学院系统科学所                       研究实习员、研究员

1984.41984.7      美国斯坦福大学                                  访问教授

1998.12—至今      中国科学院数学与系统科学研究院          研究员


历年获得的主要奖项

1.首届中国科学院杰出科学技术成就奖一等奖(个人奖)(2003-排名第1)

2.首届复旦管理学杰出贡献奖一等奖(2006-排名第1)

3.国际运筹学进展奖一等奖(1999-排名第1)

4.北京市科技进步奖一等奖(2007-排名第1)

5.13届孙冶方经济科学奖(2009-排名第2)

6.2届张培刚发展经济学优秀成果奖(2009-排名第2)

7.大禹水利科学技术奖一等奖(2009-排名第2)

8.中国科学院科学技术进步奖一等奖(1992-排名第l

9.中国科学院科学技术进步奖一等奖(1997-排名第4

10.中国科学院科技成果二等奖(1982-排名第l

11.国家科学技术进步二等奖:水利与国民经济耦合系统的模拟调控技术及应用2011-排名第4

12.国家科学技术进步三等奖(1996-排名第l

13.国家科学技术进步三等奖(1998-排名第4

14.国家科学技术进步三等奖(1987-排名第l

15.系统科学与系统工程应用贡献奖(2014-排名第l

16.国务院农村发展研究中心:农村经济社会发展优秀成果二等奖(1986-排名第l)(部级科学技术进步奖)

17.国务院农村发展研究中心:农村经济社会发展优秀成果二等奖(1990-排名第2)(部级科学技术进步奖)

18.中科院科技促进发展奖(2015-排名第l

19.中央国家机关五一劳动奖章(2004


研究方向与主要学术成果

1. 在国际上提出和创立了投入占用产出技术
投入产出分析是美国科学家 W. Leontief于1936年所创立,曾获得1973年度诺贝尔经济学奖。它以棋盘式平衡表的形式反映国民经济各个部门和各种主要产品的生产与消耗之间的平衡问题。目前世界上已有100多个国家编制和应用了投入产出表。但投入产出分析也存在明显的不足,即只考虑了投入与产出之间的关系,未考虑土地、水资源等占用在生产中发挥的重要作用。陈锡康研究员把“占用”引入传统投入产出技术的思想,于1980年代末提出和创立了新的投入占用产出技术,并建立新的完全消耗系数计算方法。 投入占用产出技术获得一些国际知名科学家好评。如美国科学院院士W. Isard、认为是“非常有价值的发现”,“先驱性研究”;投入产出分析创始人,诺贝尔奖金获得者W. Leontief认为“投入占用产出及完全消耗系数的计算方法是我们领域的一项重要的发明与创新”等;澳大利亚昆士兰大学教授R. C. Jensen和A. G. Kenwood澳大利亚昆士兰大学教授R. C. Jensen和A. G. Kenwood在昆士兰大学与中科院代表团的备忘录中写道:“澳大利亚方面对陈锡康研究员在中国所发展的新的投入占用产出方法极为欣赏,并期望这种方法将在澳大利亚得到应用”,并把“投入占用产出技术的应用”列为双方今后的合作研究项目。 目前投入占用产出技术已成为投入产出领域的一个重要的研究方向,有30多名学者因研究此方向获得博士学位,并在全国粮食产量预测、外贸、水利、教育等领域得到重要应用。
2. 全国粮食产量预测研究
国际上预测谷物产量主要采用气象预测法、遥感技术和统计动力学生长模拟法。这些方法的预测提前期一般为2个月,发达国家的预测误差通常为产量5%。陈锡康研究员等利用数量经济学方法,提出了新的以投入占用产出技术和考虑化肥等报酬递减的非线性预测方程为核心的系统综合因素预测法。自1980年开始,陈锡康研究员负责的全国粮产量预测研究组连续37年每年在4月底向中央领导预报当年度我国粮食产量。37年来预报结果如下: 第一、预测提前期为半年以上; 第二、37年来预测各年度粮食的丰、平、歉方向全部正确; 第三、平均预测误差为抽样实割实测产量的1.8%。在国际同类工作中处于领先水平,为国家有关部门制定农业和粮食政策提供了科学依据。 中央主要领导对此项研究工作给予70多次好评和批示。1997年有关领导在全国政协八届五次会议科技组讨论会上讲话,以很长篇幅高度评价此项科研工作:“最近这几年中国科学院所做的粮食产量预报,应该说还是比较准确的······不要以为这是小事,这是一件很大的事情。产量的估计影响政策的决定。粮食产量如果估计得不合适,估少了,得出缺粮的结论,就得出去购买粮食。估得过高,没有那么多,粮食真的短缺,临时去买粮就难了” 。相关领导给前中科院院长路甬祥回信:“贵院数学与系统科学研究院陈锡康等的‘预测报告’已阅,这对我们农业生产和农村经济发展的工作指导和政策制定是很有益处的”。2010年农业部致函中科院,认为“中科院长期坚持开展我国主要农产品产量预测,取得了高水平的预测成果,对农业农村工作提供了重要支持”。
3. 提出反映加工贸易的非竞争型投入产出模型(DPN模型)及以“贸易增加值”度量进出口规模和美中贸易逆差等
陈锡康研究员自1998年开始研究中国对外贸易的增加值和就业,针对中国加工贸易比重高达50%这一特点,提出反映加工贸易的非竞争型投入产出模型(DPN模型),为全球国际贸易领域提供了基础性工作,开创了贸易增加值和全球价值链的量化研究。这一模型在全球价值链、贸易与就业、能源和环境等多个研究领域中得到广泛应用。陈锡康研究员这一研究成果为众多国内外学者所引用,并为相关决策部门提供了科学的决策参考。如以“贸易增加值”度量美中贸易逆差大幅度缩小的研究结果为2006年的中美贸易谈判提供关键性参考材料,承担商务部等四部委联合的全球价值链与贸易增加值核算报告,受到多位国家领导人的批示等。该项研究获得第十三届孙冶方经济科学奖和第二届张培刚发展经济学奖。 国际投入产出学会主席Erik Dietzenbacher在欧盟WIOD项目和达特茅斯学院Robert C. Johnson等在其论文中称此项成果为“先驱性的工作,对于贸易增加值核算有着重要的影响”。WTO首席经济学家Robert Koopman、亚洲发展银行首席经济学家Shangjin Wei和美国NBER中国研究部主任Robert C. Feenstra在论文中评价此项工作“首次提出了反映加工贸易的非竞争型投入产出模型,为研究出口增长对增加值和就业的影响开创了一个全新的研究起点”。这一研究提出的“贸易增加值”概念被国际贸易与全球价值链研究领域广为使用,已成为国内外热点研究的问题。WTO前总干事Pascal Lamy提出“贸易增加值是全球贸易统计一个更好的方法”。OECD、WTO、欧盟和APEC等众多国际组织相继进行了贸易增加值的研究计划。目前,研究团队承担了APEC贸易增加值数据库项目的核心技术工作。

学术论文

  1. Extending the Input-output Model with Assets

    In this paper, the input–output model is extended with assets. It allows us to examine the various assets that are held and used in production. The requirements of assets that must be held by each sector can thus be specified. Extending the input–output model with assets provides a better alternative to the capital stock matrix in the standard Systems of National Accounts. The input–output model is extended by taking the depreciation of fixed assets into full account. This extension allows for the calculation of total holding coefficients that express the amount of assets that are required to be held in each sector in order to satisfy a unit of final demand. In addition, a dynamic version of the extended model is presented. The extended input–output model has been widely applied in China for various purposes.

  2. Input-Occupancy-Output Analyses and Its Application in China

    The input-output analysis developed by American economist Wassily Leontief has found wide applications all over the world. In current inputoutput tables, the term input means the consumption of various essential factors in economic activities. In addition to consuming some means of production, a production process also controls stocks of many means of production, natural resources and so on, such as capital assets, land, circulating capital and labour force. For example, in farming a certain amount of land must be occupied and in mining some mineral resources should be possessed. Any producer who wishes to exist and develop in competition will control and employ a certain amount of skilled labour force, including experienced managing personnel, engineers and workers. To acquire an output there should be not just input flows but also 'occupancy' in the sense of control over or possession of stocks from which many of these flows originate.

  3. 非竞争型投入占用产出模型及其应用-中美贸易顺差透视

    本文构建了一种能够反映中国加工贸易特点的非竞争(进口)型投入占用产出模型,提出了一个国家全部出口与分部门、分大类商品的单位出口对国内增加值和就业的拉动效应的计算方法,从数学上证明了出口总值等于出口商品所包含的完全国内增加值与完全进口额之和,并据此编制了2002年中美两国的非竞争(进口)型投入占用产出表,测算和分析了中美两国出口对各自国内增加值和就业的影响。

  4. The Estimation of Domestic Value-Added and Employment Induced by Exports: An Application to Chinese Exports to the United States

    Develop a methodological framework for the estimation of the increases in domestic value-added and employment in a country in response to increases in its exports, in the aggregate as well as disaggregated by commodity and by destination. Apply this methodology empirically to the estimation of the increases in Chinese domestic value-added, or equivalently, Chinese GDP, and employment, as a consequence of increases of US$1,000 in aggregate Chinese exports to the United States and, say, US$1,000 in the exports of Chinese textiles to the United States, and to the World. The methodology is applicable to the analysis of the effects of exports to any specific country, or groups of countries, or to the World as a whole.

  5. Domestic Value Added and Employment Generated by Chinese Exports: A Quantitative Estimation

    We develop an input–output methodology to estimate how Chinese exports affected the country's total domestic value added (DVA) and employment in the years 2002 and 2007. For every US$1000 dollar of Chinese exports in 2007 (2002), DVA and employment are estimated to be US$591 (US$466) and 0.096 (0.242) person-year, respectively. To implement these estimations, we use hitherto unpublished Chinese government data to construct several completely new datasets, including an input–output table with separate input–output and employment-output coefficients for processing exports, non-processing exports, and output for domestic use. We hypothesize that, in comparison with the export sector, China's domestic sector would be relatively autarkic due to China's history of central planning. We expect that exports would generate less DVA and employment than output for domestic use. Processing exports, which are highly dependent on imported inputs, would similarly generate less DVA and employment than non-processing exports. Our findings support these expectations. For both 2002 and 2007, the DVA and employment effects of domestic final demand were higher than those of non-processing exports, which were in turn higher than those of processing exports. However, with the progress of economic reforms, we found that the total DVAs of exports and domestic final demand have converged from 2002 to 2007.

  6. On the Study of China’s Grain Output Prediction

    Feeding 1.2 billion Chinese is a critical issue both for China and for the world. This paper presents a systematic integrated method (SIM), with the key elements of input-occupancy-output analysis, nonlinear variable coefficient forecasting equations, and minumum sum of absolute value technique to predict China's grain output. Since 1980 this approach has been successfully implemented in China, and is appreciated by China's top leaders and responsible governmental agencies.

  7. 投入占用产出技术理论综述

    主要介绍了我国学者陈锡康研究员所创立的投入占用产出技术,从静态模型和动态模型两方面完整地阐述了投入占用产出思想、模型。

  8. Input-Output Techniques in China

    This article describes the three main stages of the development of input–output techniques in China, examines the sectors in which input–output has been employed, and considers which input–output applications have been found useful.

  9. A Multiyear Lags Input-Holding-Output Model on Education with Excluding Idle Capital and Chinese Education Structure Study

    This paper develops a multi-year lag Input-Holding-Output (I-H-O) Model on education with exclusion of the idle capital to address the reasonable education structure in support of a sustainable development strategy in China.

  10. Evaluating and Predicting Shadow Prices of Water Resources in China and Its Nine Major River Basins.

    Water pricing plays a crucial role in water resources management. Water shadow price is an important reference in setting water price. It was said that in practice it is almost impossible to obtain water shadow price by solving a linear programming model. In this paper we use water conservancy economy input-occupancy-output tables of the nine Chinese major river basins, and combining input–output analysis method with linear programming method we develop a linear programming model with restrictions on the final demand, total output, trade balance and water availability. We estimate the water shadow prices for industrial water and productive water for the nine Chinese major river basins in 1999 and compared these results with the real industrial water price in China in 1999. Then, for operational purposes and to estimate the shadow prices of industrial water and productive water more easily, and using a Gauss–Newton nonlinear simulation method, we present two nonlinear models that relate the ratio of the volume of water used to the total water resources volume with the shadow prices to predict shadow prices of industrial water and productive water in 2020 and 2030 in China and its nine major river basins.


我的团队

杨翠红
中科院数学与系统科学研究院研究员
刘秀丽
中科院数学与系统科学研究院研究员
郭菊娥
西安交通大学教授
范金
南京林业大学教授

我的团队


联系方式

北京市海淀区中关村东路55号中国科学院数学与系统科学研究院南楼410

010-82541797

xkchen@iss.ac.cn